DONN'T GIVE UP
Make yourself a "study space." You know how they say never to work in bed? That's because if you work in bed, it suddenly becomes a place for work ,we associate activities with where we do them. To take advantage of this, make a place at home just for studying. When you get there, your mind will go into the studying zone automatically, because it's the only association it has with that place.Formulas in Algebra
Algebraic formulas
this is the basic formulas of algebra .... you should learn it.
 a^{2} – b^{2} = (a – b)(a + b)
 (a+b)^{2} = a^{2} + 2ab + b^{2}
 a^{2} + b^{2} = (a – b)^{2} + 2ab
 (a – b)^{2} = a^{2} – 2ab + b^{2}
 (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc
 (a – b – c)^{2} = a^{2} + b^{2} + c^{2} – 2ab – 2ac + 2bc
 (a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} ; (a + b)^{3} = a^{3} + b^{3} + 3ab(a + b)
 (a – b)^{3} = a^{3} – 3a^{2}b + 3ab^{2} – b^{3}
 a^{3} – b^{3} = (a – b)(a^{2} + ab + b^{2})
 a^{3} + b^{3} = (a + b)(a^{2} – ab + b^{2})
 (a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}
 (a – b)^{3} = a^{3} – 3a^{2}b + 3ab^{2} – b^{3}
 (a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4})
 (a – b)^{4} = a^{4} – 4a^{3}b + 6a^{2}b^{2} – 4ab^{3} + b^{4})
 a^{4} – b^{4} = (a – b)(a + b)(a^{2} + b^{2})
 a^{5} – b^{5} = (a – b)(a^{4} + a^{3}b + a^{2}b^{2} + ab^{3} + b^{4})
 If n is a natural number a^{n} – b^{n} = (a – b)(a^{n1} + a^{n2}b+…+ b^{n2}a + b^{n1})
 If n is even (n = 2k), a^{n} + b^{n} = (a + b)(a^{n1} – a^{n2}b +…+ b^{n2}a – b^{n1})
 If n is odd (n = 2k + 1), a^{n} + b^{n} = (a + b)(a^{n1} – a^{n2}b +… b^{n2}a + b^{n1})
 (a + b + c + …)^{2} = a^{2} + b^{2} + c^{2} + … + 2(ab + ac + bc + .)
 Laws of Exponents (a^{m})(a^{n}) = a^{m+n }(ab)^{m} = a^{m}b^{m }(a^{m})^{n} = a^{mn}

 n! = (1).(2).(3)…..(n  1).n
 n! = n(n  1)! = n(n  1)(n  2)! = ….
 0! = 1